

RESEARCH ARTICLE

Analysis of proposed carbon capture projects in the US power sector and co-location with environmental justice communities

Yukyan Lam^{1*}, Jennifer Ventrella^{1,2}, Ana Isabel Baptista^{1,2}, Juan David Rodriguez¹

1 Tishman Environment and Design Center, The New School, New York, New York, United States of America, **2** Milano School of Policy, Management and Environment, The New School, New York, New York, United States of America

* ylam.pub@gmail.com

OPEN ACCESS

Citation: Lam Y, Ventrella J, Baptista AI, Rodriguez JD (2025) Analysis of proposed carbon capture projects in the US power sector and co-location with environmental justice communities. PLoS One 20(5): e0323817. <https://doi.org/10.1371/journal.pone.0323817>

Editor: Diogo Guedes Vidal, University of Coimbra: Universidade de Coimbra, PORTUGAL

Received: August 30, 2024

Accepted: April 14, 2025

Published: May 16, 2025

Copyright: © 2025 Lam et al. This is an open access article distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data availability statement: All relevant data are within the paper and its [Supporting Information](#) files.

Funding: The author(s) received no specific funding for this work.

Abstract

In recent years, there has been a proliferation of new federal investments and policy support for “carbon management” technologies, such as carbon capture and storage (CCS), as a strategy to mitigate the United States’ greenhouse gas emissions (GHGs). The equity implications of deploying these technologies—particularly their impacts on low-income communities and communities of color, or environmental justice (EJ) communities—have been understudied. A prominent example of this is seen in the US power sector, where CCS has been proposed as a means to mitigate the carbon dioxide emissions of fossil fuel-fired power plants, one of the major sources of GHGs in the country. EJ community leaders alongside some environmental organizations and researchers have voiced deep concerns about how CCS may exacerbate environmental injustice, given that it is itself input-intensive and can prolong the life of polluting fossil fuel infrastructure, which is disproportionately sited in low-income communities and communities of color. To begin to fill the gap in analyses of the equity implications of carbon management, we conducted a spatial analysis of CCS projects proposed for the power sector and their co-location with EJ communities. Compiling a proposed project list from four CCS databases, we found that 33 of the 35 projects were located in EJ communities, and that additionally, 423 of the 497 (or 85%) EJ census block groups located within three miles of at least one proposed project currently face heightened environmental stress. These results illustrate both the feasibility and the necessity of analyzing the co-location of proposed CCS buildout in EJ communities, and add to the nascent body of literature evaluating the impacts of carbon management technologies such as CCS on these communities.

Competing interests: The authors have declared that no competing interests exist.

Introduction

Carbon capture and storage (CCS) or carbon capture, utilization, and storage (CCUS) refer to processes where CO₂ is captured and separated at the point of combustion and transported for use or storage. Proponents of CCS maintain that it can be used to abate the CO₂ emissions of the power sector either by capturing the CO₂ emissions of coal and natural gas power plants, or by capturing the CO₂ emitted to make fossil fuel-derived hydrogen as an alternative fuel source that power plants can co-fire [1–3]. However, fossil fuel infrastructure is disproportionately sited in low-income communities and communities of color [4–7], and representatives of these environmental justice (EJ) communities have voiced deep concerns about how expanding and perpetuating this infrastructure will compound the socio-environmental burdens they already face [8–10]. One of the primary concerns is the potential for increased co-pollutant emissions, such as particulate matter, sulfur dioxide, and nitrogen oxides, in EJ communities. Co-pollutant emissions emitted by fossil fuel-powered plants and other polluting sources can contribute to negative, localized health impacts in communities such as adverse birth outcomes, cardiovascular disease, respiratory impacts, and cancer [11–14]. The linkage between co-pollutant emissions and negative health impacts underlines the importance of assessing the co-location of energy infrastructure in EJ communities and examining carbon management proposals beyond their purported mitigation of greenhouse gas (GHG) emissions.

The Intergovernmental Panel on Climate Change's (IPCC's) discussion of carbon dioxide removal and carbon capture technologies reveals the prominence of these approaches in climate plans and policies [15]. Within the United States, although not entirely new, financial incentives and other policies advancing CCS have proliferated especially in recent years. For example, the 2021 Infrastructure Investment and Jobs Act (IIJA) and the 2022 Inflation Reduction Act (IRA) introduced significant expanded federal funding and incentives for CCS [16–18], and in 2024, the US Environmental Protection Agency (EPA) classified CCS as a best system of emissions reduction (BSER) for new natural gas and existing coal plants [19,20]. The federal government, through agencies like the Department of Energy, has assumed the role of a catalytic investor in so-called “carbon management” technologies including CCS, while its capacity to regulate carbon management activities has been de-emphasized, posing new risks to EJ communities and the broader public [21]. Carbon management is a term used to describe a suite of technologies that remove carbon dioxide from point sources and the atmosphere for permanent storage or use in industry [22]. In addition to CCS, several other examples of carbon management technologies include direct air capture, bioenergy with carbon capture and sequestration, hydrogen fuels, and renewable natural gas. Another major factor in the prominence assumed by CCS is the fact that climate modeling, which has formed a basis for some policymaking, invokes CCS in a way that assumes high rates of efficacy and neglects negative externalities and equity implications [21].

Research has shown that CCS has limited potential to reduce GHG emissions and may even increase them [23,24], and other researchers have documented known health and safety risks along the CCS supply chain including extraction, capture,

transport, and storage [10]. However, policymakers and other proponents of CCS have yet to conduct an environmental justice analysis of proposed CCS buildout in the power sector. While CCS investments cover additional sectors, such as industrial decarbonization and hydrogen as a transportation fuel, prominent national level debates about the use of CCS in power sector regulations motivated the focus of this study. This paper describes an illustrative analysis of the potential for CCS to exacerbate risks in EJ communities through a spatial analysis of proposed CCS projects at power plants.

Methods

Proposed CCS projects

A list of proposed CCS projects in the US power sector was compiled drawing from databases of the following sources: 1) DOE Energy Technology Laboratory (NETL), 2) Global CCS Institute, 3) International Energy Agency (IEA), and 4) Clean Air Task Force (CATF) (see [S1 Table](#) for a full list of projects included in the analysis and the access dates for each database used). Two additional facilities were included based on information provided by participants at the National Symposium on Climate Justice and Carbon Management at the Wingspread Center, Wisconsin from June 1–4, 2023. Latitude and longitude coordinates were provided for projects appearing in the DOE database. For projects not included in the DOE database, we estimated their location based on publicly available data about the power plant at which they would be installed or at an approximate location. Approximate locations were estimated for seven of the 35 plants. To perform the estimation, secondary research sources such as project announcements, reports, or other documentation were used to triangulate an approximate project location. Approximated locations are a potential source of error in the analysis, however, these are random, not systematic, errors, and therefore should not inherently bias the data towards or away from any particular population. Our inclusion criteria included any planned CCS facility in the power sector across all four databases. The application of this criteria resulted in a final list of 35 planned facilities included in the analysis (see [S1 Appendix](#) and [S1 File](#)). We did not include operational plants because at the time of the analysis the only operational CCS facilities in the power sector were at pilot/demo scale, not commercial scale.

Spatial analysis of co-location with EJ communities

It was next determined whether each facility was located within three miles of an EJ community. The distance of three miles is consistent with other EJ co-location studies and is used in US EPA's Power Plants and Neighboring Communities mapping tool [25]. EJ communities were considered to be those census block groups (CBGs):

- Whose percentage of people of color is equal to or greater than the state's overall percentage people of color; or
- Whose percentage of population living at or below twice the federal poverty level is equal to or greater than the state's percentage of population living at or below twice the federal poverty level.

These race and income-based criteria were based on the Equitable and Just National Climate Forum (EJNCF)'s recommended criteria for defining EJ communities for purposes of targeting power sector emissions reductions [26]. The EJNCF is a group of national environmental organizations and environmental justice organizations dedicated to advancing a national climate and environmental policy agenda that centers on environmental justice. As articulated by EJNCF, using race and income-based criteria to define EJ communities is consistent with scientific literature showing those two factors to be key predictors of environmental inequality, as well as with federal and state government policy guidance on how to identify EJ areas [26,27].

Using these demographic criteria to examine the fenceline populations of the CCS facilities is also consistent with the EPA's Power Plants and Neighboring Communities mapping tool [28], which displays the "demographic index," an index that averages the percentages of low-income individuals and people of color (POC), as well as the low-income percentage, the POC percentage, and the linguistically isolated population percentages, in the 3-mile areas surrounding a power

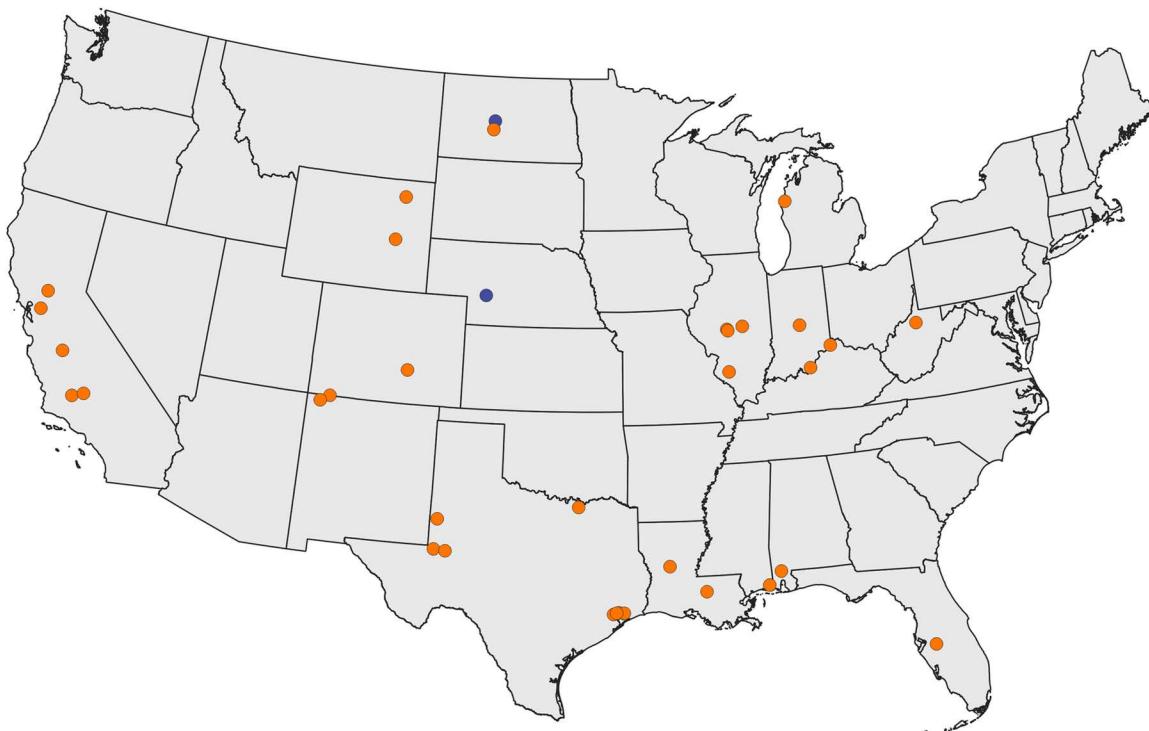
plant. Rather than average the demographics over the 3-mile area to determine whether the EJ thresholds were met, we instead focused on whether the 3-mile area around a plant contained any EJ CBG in whole or in part. This latter option was considered more protective and inclusive, as it would allow for the inclusion of smaller EJ areas within the 3-mile radius.

The dataset of CBGs was obtained from EJSCREEN in July 2023, and the above criteria were applied to the demographic indicators contained in that dataset [29]. The demographic indicators in this vintage of EJSCREEN are from the American Community Survey, 5-year estimates for 2017–2021. Data cleaning and application of the criteria were done in R. The dataset of CBGs was joined to a shapefile of CBG boundaries for 2021, obtained from the US Census Bureau [30]. Spatial analysis and mapping were performed in QGIS.

The proximity analysis was conducted in QGIS (version 3.32) using the ‘Buffer’ tool to create 3-mile radius buffer zones around the points of interest. Input data included a point layer representing the facility locations, a shapefile layer representing CBGs, and a CSV layer that included socio-demographic data. The coordinate reference system (CRS) was set to ESRI 102003 to ensure accurate distance calculations in miles. Features within the buffer zones were identified and analyzed through spatial joins with the EJ CBG and supplemental indices datasets. Additional documentation for each tool can be found at the QGIS website.

Analysis of social and environmental burden in EJ communities near proposed facilities

The social and environmental burden in those EJ CBGs located within three miles of a proposed CCS power plant project was examined by relying on indicators of burden already contained in the EJSCREEN dataset. Specifically, EJSCREEN contains “supplemental indices,” which combine a five-factor demographic index (low income, unemployment, limited English, less than high school education, and low life expectancy) with each one of 13 environmental indicators (PM2.5, ozone, diesel, air toxics cancer risk, air toxics respiratory hazard index, toxic releases to air, traffic proximity, lead paint, proximity to a Risk Management Plan facility, proximity to a facility managing hazardous waste, Superfund proximity, underground storage tanks, and wastewater discharge). For each CBG, EJSCREEN has an indicator which indicates the number of supplemental indices exceeding the 80th percentile relative to the rest of the country, and a similar indicator indicating the number of supplemental indices exceeding the 80th percentile relative to the rest of the state.


We tallied the number of EJ CBGs within three miles of an implicated facility that had at least one supplemental index exceeding the 80th percentile. We initially used the national-level percentiles, but later established that the analysis yielded the same result when using the state-level percentiles in this vintage of EJSCREEN. In order to ensure that CBGs located near more than one implicated facility were not double-counted, we merged three-mile buffers around the implicated facilities, intersected the buffers with the EJ CBGs, and then tallied the number of CBGs with one or more supplemental index exceeding the 80th percentile. This analysis was performed in QGIS.

Results

Following these methods, we find that there are 35 proposed CCS projects, and 33 of them (94.3%) are located within three miles of an EJ community, while only two of them (5.7%) are not (Fig 1, Table 1). Of the CBGs falling in whole or partially within the 3-mile fenceline areas of an implicated coal plant, 497 meet the criteria for being considered an EJ CBG, while 188 do not (Table 2). These 497 CBGs are particularly vulnerable. A majority of them (85.1%) already face heightened burden, as indicated by having one or more supplemental EJSCREEN indices exceeding the 80th percentile.

Discussion

Our findings indicate that the vast majority of proposed CCS facilities are located within three miles of an EJ community. Furthermore, the vast majority of the EJ CBGs within a 3-mile radius of these facilities face heightened environmental stress, meaning that the overwhelming majority of EJ CBGs are already overburdened to some degree. These results

Orange = located within three miles of an EJ community, blue = not located within three miles of an EJ community

Fig 1. Map of proposed CCS projects in the US power generation sector and co-location with EJ communities.

<https://doi.org/10.1371/journal.pone.0323817.g001>

Table 1. Proposed CCS projects at power plants and co-location with an EJ community.

	Number of projects (% of total)
Co-located with an EJ community	33 (94.3%)
Not co-located with an EJ community	2 (5.7%)
Total CCS projects proposed at power plants	35 (100%)

<https://doi.org/10.1371/journal.pone.0323817.t001>

Table 2. EJ Census Block Groups within three miles of a proposed CCS power plant project.

	Number of EJ CBGs (% of total)
Facing heightened environmental stress	423 (85.1%)
Not facing heightened environmental stress	74 (14.9%)
Total EJ CBGs within three miles of CCS projects	497 (100%)

<https://doi.org/10.1371/journal.pone.0323817.t002>

illustrate both the importance and feasibility of conducting analysis on the disproportionate impacts that EJ communities may face from CCS buildout in the US power sector. Our findings align with previous research that has shown that fossil fuel power plants are disproportionately sited in EJ communities [4–6]. The development of new CCS projects such as the ones assessed in this study can exacerbate the already disproportionate burden that EJ communities bear, building on a legacy of historical injustice. These findings are critical as to date, the federal government has not conducted any formal

EJ or cumulative impacts (CI) analysis of proposed CCS facilities in both regulatory and non-regulatory contexts. One prominent regulatory example is the EPA's classification of CCS as a BSER despite not assessing potential EJ impacts, including the changes to co-pollutant emission levels at any plants, or cumulative impacts of CCS for existing and new natural gas-fired power plants [9]. Outside of the regulatory sphere, the DOE has already advanced CCS demonstration projects at power plants despite a lack of research on the EJ or CI impacts of these facilities [31,32]. Even though billions of dollars in federal funding have already been allocated to these types of projects, it was only in 2024 that the National Academies of Sciences, Engineering, and Medicine (NASEM), a congressionally chartered organization that provides scientific expertise on timely national policy issues, launched a call for experts to assess the safety and EJ impacts of carbon management [33].

Our research builds on the nascent academic literature that acknowledges the impact of CCS on frontline communities and its potential to exacerbate existing injustices. One study that outlines the biophysical risks of CDR technologies, including CCS, establishes that frontline communities are most at risk from the impacts of CCS capture, transport, and storage [34]. Nielsen and colleagues apply a justice lens to review the literature on community perceptions of CCS projects, and find potential concerns related to both distributional and procedural justice [35]. One of their reviewed studies reported concerns about the inequitable distribution of risks from CO₂ leakage during storage [36]. Several of the reviewed studies reported instances of procedural injustices in which project information was not easily accessible, with some communities lacking the resources to engage with developers and negotiate with them, and lower-wealth communities feeling that they would be unable to influence or be protected from negative outcomes from CCS over a project's lifetime [37,38].

Similarly, McLaren et al. [39] conduct an overview of injustices along the CCS lifecycle, including the planning, capture, transport, and storage stages. They discuss the risks of enabling increased fossil fuel use, increased energy and water consumption during the capture phase, and CO₂ leakage during transport, storage, and decommissioning [39]. In a more recent review, Rojas-Rueda, McAuliffe, and Morales-Zamora [40] outline the health equity risks of CCS projects and their potential to amplify existing energy injustices, such as the exposure to environmental pollutants, risks during transport and storage, and disproportionate siting in EJ communities. Our study contributes empirical evidence to support these emerging claims about the potential injustices of CCS projects.

While the academic literature on the EJ impacts of CCS is nascent, substantial scientific research exists that points toward detrimental environmental and health impacts arising from the deployment of CCS at power plants. For example, at the point of capture, the energy penalty associated with powering the capture process may lead to increases in non-GHG emissions, such as mercury, particulate matter, sulfur dioxide, nitrogen oxides, and hazardous air pollutants, if the process is powered using fossil fuels [41]. Studies have reported energy penalties associated with carbon capture between 15 and 44 percent [42]. Another risk during the capture phase is the disposal of amine-based solvents used to separate CO₂ from the flue gas, which may present environmental risks (see, e.g., [43,44]). As another example, CO₂ transport via pipelines presents additional risks in the case of leakage or pipeline failure [45–47]. Finally storage of CO₂ can pose risks to local drinking water [48–50] and potentially contribute to seismic activity [51–53]. Major gaps remain in the literature on how each of these risks may differentially impact EJ communities, yet the co-location of potential CCS infrastructure with EJ communities, as we have begun to document here, points toward the urgent need to fill this gap.

Limitations

A limitation of this study is that it does not capture the entire ecosystem of CCS projects in the power sector as it reflects only the projects included in the aforementioned databases. A forthcoming EPA power sector rule for existing natural gas plants may also impact where CCS projects are proposed, but the rule has not been finalized at the time of this writing and therefore its implications can not be captured in this analysis. While our definition of EJ is illustrative of a definition that EJ groups have used for other policy and research purposes, other definitions exist that could be used for future analyses. Moreover, as is the case in other EJ-focused spatial analyses that investigate "community" impacts, the CBG

spatial unit used in this analysis is an artificial boundary and not necessarily representative of actual EJ communities. As more CCS projects are proposed and developed, qualitative analysis that investigates in-situ impacts on EJ communities would ground-truth and build on these preliminary spatial analyses. Finally, the buildup of CO₂ storage and transportation infrastructure that would be needed to make these and other CCS projects possible was beyond the scope of this current analysis. Conducting an assessment of the co-location of proposed CCS storage facilities and pipelines with EJ communities could be an area of future research, allowing for a more complete picture of the full EJ costs and risks of implementing CCS.

Other critical limitations include the static nature of the analysis and potential biases introduced by the available data sources. Given the small sample size of the dataset, more in-depth statistical or spatial analyses such as regression models, spatial clustering techniques, or longitudinal comparisons were not used in this analysis, but would serve to add further nuance to understanding how carbon capture projects may disproportionately affect EJ communities. In addition to the quantitative assessment performed in this study, an analysis of qualitative insights from impacted communities would provide additional insight into the potential EJ impacts of CCS projects in the power sector and further strengthen these preliminary findings.

Conclusion

The results of this co-location analysis highlight that proposed CCS facilities in the US power sector are disproportionately located in EJ communities. In reviewing the CCS riskscape, there is concern that these facilities may present additional risk to already overburdened EJ communities. To date, there is a scarcity of EJ or cumulative impacts analyses to evaluate the potential impacts of proposed CCS facilities. Future CCS initiatives could benefit from undergoing these types of analyses to ensure that projects will not exacerbate existing injustices and protect low-income communities and communities of color that already face the disproportionate impacts of energy infrastructure siting. Given that the majority of the proposed CCS facilities in the power sector considered in our analysis are located in EJ communities, and that such communities are already overburdened, our results point to the importance of a precautionary approach to CCS implementation and more rigorous analysis and consultation with communities before projects are implemented.

A rigorous EJ analysis should consider the impacts to co-pollutant emissions from CCS in addition to GHG emissions and incorporate an assessment of CI and potential health impacts at relevant spatial scales. For CCS projects that do move forward, plants should be in compliance with environmental regulations before they are permitted to add new CCS equipment. More rigorous monitoring at the site, including fenceline air quality monitoring, should also be required. In terms of consultation, potentially affected communities should receive comprehensive information about a project early and often, be provided with technical support to assess information, and have the option to influence the outcome of the project. In places that are already overburdened, meaningful engagement practices must be employed, following the framework of other EJ protections like state-level CI laws in New York and New Jersey. A critical component of meaningful engagement is the option for a community to deny a facility from moving forward with its development, which would advance justice aims while protecting EJ communities from the burdens of energy infrastructure siting.

Supporting information

S1 Table. CCS Databases.

(PDF)

S1 Appendix. List of proposed CCS facilities.

(PDF)

S1 File. CCS_Facilities_Planned_8.31.23.csv.

(CSV)

Acknowledgments

The authors would like to thank Dr. Nicky Sheats and Thomas Ikeda at the John S. Watson Institute for Urban Policy and Research at Kean University, Ansha Zaman at the Center for Earth, Energy and Democracy, and Brooke Helmick at the New Jersey Environmental Justice Alliance for the feedback they provided throughout the analysis.

Author contributions

Conceptualization: Yukyan Lam, Ana Isabel Baptista.

Data curation: Yukyan Lam, Jennifer Ventrella, Juan David Rodriguez.

Formal analysis: Yukyan Lam, Jennifer Ventrella, Juan David Rodriguez.

Investigation: Yukyan Lam, Jennifer Ventrella, Juan David Rodriguez.

Methodology: Yukyan Lam, Jennifer Ventrella, Ana Isabel Baptista, Juan David Rodriguez.

Project administration: Yukyan Lam, Ana Isabel Baptista.

Supervision: Yukyan Lam, Ana Isabel Baptista.

Visualization: Yukyan Lam, Jennifer Ventrella, Juan David Rodriguez.

Writing – original draft: Yukyan Lam, Jennifer Ventrella.

Writing – review & editing: Yukyan Lam, Jennifer Ventrella, Ana Isabel Baptista.

References

1. US Environmental Protection Agency. New Source Performance Standards for greenhouse gas emissions from new, modified, and reconstructed fossil fuel-fired electric generating units; emission guidelines for greenhouse gas emissions from existing fossil fuel-fired electric generating units; and repeal of the Affordable Clean Energy Rule [Internet]. Washington, DC: EPA; 2023 May p. 33240–420. Report No.: EPA-HQ-OAR-2023-0072, FRL-8536-02-OAR. Available from: <https://www.federalregister.gov/documents/2023/05/23/2023-10141/new-source-performance-standards-for-greenhouse-gas-emissions-from-new-modified-and-reconstructed>
2. US Department of Energy. Pathways to commercial liftoff: Carbon management [Internet]. Washington, DC: DOE; 2023 Apr. Available from: https://liftoff.energy.gov/wp-content/uploads/2023/04/20230424-Liftoff-Carbon-Management-vPUB_update.pdf
3. US Department of Energy. Pathways to commercial liftoff: Clean hydrogen [Internet]. Washington, DC: DOE; 2023 Mar. Available from: <https://liftoff.energy.gov/wp-content/uploads/2023/03/20230320-Liftoff-Clean-H2-vPUB.pdf>
4. Declet-Barreto J, Rosenberg AA. Environmental justice and power plant emissions in the Regional Greenhouse Gas Initiative states. PLoS One. 2022;17(7):e0271026. <https://doi.org/10.1371/journal.pone.0271026> PMID: 35857722
5. Bridget D, Ash M, Boyce JK. Green for all: Integrating air quality and environmental justice into the clean energy transition [Internet]. PERI; 2021. Available from: <https://peri.umass.edu/publication/item/1408-green-for-all-integrating-air-quality-and-environmental-justice-into-the-clean-energy-transition>
6. Cushing LJ, Li S, Steiger BB, Casey JA. Historical red-lining is associated with fossil fuel power plant siting and present-day inequalities in air pollutant emissions. Nat Energy. 2022;8(1):52–61. <https://doi.org/10.1038/s41560-022-01162-y>
7. Fleischman L, Franklin M. Fumes across the fence-line: The health impacts of air pollution from oil & gas facilities on African American communities [Internet]. National Association for the Advancement of Colored People & Clean Air Task Force; 2017 Nov. p. 36. Available from: <https://naacp.org/resources/fumes-across-fence-line-health-impacts-air-pollution-oil-gas-facilities-african-american>
8. Tishman Environment and Design Center. Statement by environmental justice organizations on the National Symposium on Climate Justice & Carbon Management [Internet]. TEDC. 2023. Available from: <https://www.tishmancenter.org/blog/statement-by-environmental-justice-organizations-on-the-national-symposium-on-climate-justice-and-carbon-management>
9. Tishman Environment and Design Center, New Jersey Environmental Justice Alliance, Center for Earth, Energy & Democracy, Kean University John S. Watson Institute. Comments submitted on EPA's New Source Performance Standards for greenhouse gas emissions from new, modified, and reconstructed fossil fuel-fired electric generating units; emissions guidelines for greenhouse gas emissions from existing fossil fuel-fired electric generating units; and repeal of the Affordable Clean Energy Rule [Internet]. TEDC, NJEJA, CEED, John S. Watson Institute; 2023 Aug. Available from: https://ceed.org/wp-content/uploads/2023/08/EPA-New-Source-GHG-Comments-Tishman_CEED_NJEJA_Watson.pdf
10. Tishman Environment and Design Center, Kean University John S. Watson Institute for Urban Policy & Research, Center for Earth, Energy & Democracy, New Jersey Environmental Justice Alliance. Environmental justice concerns with carbon capture and hydrogen co-firing in the power

sector [Internet]. TEDC, John S. Watson Institute, CEED, NJEJA; 2024 Jun. Available from: <https://static1.squarespace.com/static/5d14dab43967cc000179f3d2/t/6697cde06e59501da45d2535/1721224673312/CCS+%26+EJ+White+Paper+-+Final+Draft.pdf>

11. Kim C, Henneman L, Choirat C, Zigler C. Health effects of power plant emissions through ambient air quality. *J R Stat Soc A*. 2020;183:1677–703.
12. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. *Nature*. 2015;525(7569):367–71. <https://doi.org/10.1038/nature15371> PMID: 26381985
13. Chen T-M, Gokhale J, Shofer S, Kuschner WG. Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. *Am J Med Sci*. 2007;333(4):249–56. <https://doi.org/10.1097/MAJ.0b013e31803b900f> PMID: 17435420
14. Guo H, Lee SC, Chan LY, Li WM. Risk assessment of exposure to volatile organic compounds in different indoor environments. *Environ Res*. 2004;94(1):57–66. [https://doi.org/10.1016/s0013-9351\(03\)00035-5](https://doi.org/10.1016/s0013-9351(03)00035-5) PMID: 14643287
15. Center for International Law, Heinrich-Böll-Stiftung. IPCC unsummarized: Unmasking clear warnings on overshoot, techno-fixes, and the urgency of climate justice [Internet]. Washington, DC: CIEL, Heinrich-Böll-Stiftung; 2022 Apr. Available from: https://www.ciel.org/wp-content/uploads/2022/04/IPCC-Unsummarized_Unmasking-Clear-Warnings-on-Overshoot-Techno-fixes-and-the-Urgency-of-Climate-Justice.pdf
16. US Department of Energy. The Inflation Reduction Act drives significant emissions reductions and positions america to reach our climate goals [Internet]. Washington, DC: DOE; 2022 Aug. Report No.: DOE/OP-0018. Available from: https://www.energy.gov/sites/default/files/2022-08/8.18%20InflationReductionAct_Factsheet_Final.pdf
17. de la Garza A. The Inflation Reduction Act is a carbon capture bonanza. *TIME* [Internet]. 2022 Aug 11; Available from: <https://time.com/6205570/inflation-reduction-act-carbon-capture/>.
18. US Department of Energy. The Infrastructure Investment and Jobs Act: Opportunities to accelerate deployment in fossil energy and carbon management activities [Internet]. Washington, DC: DOE; 2021 Dec. Available from: <https://www.energy.gov/sites/default/files/2021-12/FECM%20Infrastructure%20Factsheet.pdf>
19. Congressional Research Service. Carbon capture and sequestration (CCS) in the United States [Internet]. Washington, DC: CRS; 2022 Oct. Available from: <https://crsreports.congress.gov/product/pdf/R/R44902/17>
20. US Environmental Protection Agency. New Source Performance Standards for greenhouse gas emissions from new, modified, and reconstructed fossil fuel-fired electric generating units; emission guidelines for greenhouse gas emissions from existing fossil fuel-fired electric generating units; and repeal of the Affordable Clean Energy Rule [Internet]. Washington, DC: EPA; 2024 May p. 39798–40064. Report No.: EPA-HQ-OAR-2023-0072 FRL-8536-01-OAR. Available from: <https://www.federalregister.gov/documents/2024/05/09/2024-09233/new-source-performance-standards-for-greenhouse-gas-emissions-from-new-modified-and-reconstructed>
21. Baptista AI, Lam Y, Ventrella J, Sheats N, Ikeda T, Zaman A. Climate justice futures: carbon management risks and alternatives. *Clim Resil Clim Justice*.
22. White House Environmental Justice Advisory Council. White House Environmental Justice Advisory Council Recommendations: Carbon Management Workgroup [Internet]. WHEJAC; 2023 Nov. Available from: https://www.epa.gov/system/files/documents/2023-11/final-carbon-management-recommendations-report_11.17.2023_508.pdf
23. Rogers J, Chavez M, McNamara J. Beyond the smokestack: Assessing the impacts of approaches to cutting gas plant pollution. Cambridge, MA: Union of Concerned Scientists; 2024 Oct. Available from: https://www.ucsusa.org/sites/default/files/2024-10/Beyond_the_Smokestack_issue-brief.pdf
24. Grubert E, Sawyer F. Us power sector carbon capture and storage under the inflation reduction act could be costly with limited or negative abatement potential. *Environ Res Infrastruct Sustain*. 2023;3:015008.
25. US Environmental Protection Agency. Power plants and neighboring communities [Internet]. 2021 [cited 2024 Aug 12]. Available from: <https://www.epa.gov/power-sector/power-plants-and-neighboring-communities>
26. Equitable & Just National Climate Forum. Approaches to defining environmental justice community for mandatory emissions reduction policy. Washington, DC: EJNCF; 2021 Sep.
27. Tishman Environment and Design Center. Defining environmental justice communities for environmental justice policies [Internet]. New York, NY: TEDC; 2021 Apr. Available from: https://static1.squarespace.com/static/5d14dab43967cc000179f3d2/t/6492fff8f3f9ed1c7997e02d/1687355384264/Defining+Environmental+Justice+Communities+for+EJ+Policies_Final+_June2021.pdf
28. US Environmental Protection Agency. Power Plants and Neighboring Communities Mapping Tool [Internet]. [cited 2024 Aug 12]. Available from: <https://experience.arcgis.com/experience/2e3610d731cb4cfcbcec9e2dc83fc94>
29. US Environmental Protection Agency. Download EJScreen Data [Internet]. 2023 [cited 2023 Jul 10]. Available from: <https://www.epa.gov/ejscreen/download-ejscreen-data>
30. US Census Bureau. Cartographic boundary files [Internet]. Census.gov. 2021 [cited 2024 Aug 12]. Available from: <https://www.census.gov/geographies/mapping-files/time-series/geo/cartographic-boundary.html>
31. US Department of Energy. Carbon capture demonstration projects program [Internet]. [cited 2025 Feb 6]. Available from: <https://www.energy.gov/oe/CCdemos>
32. US Government Accountability Office. Carbon capture and storage: Actions needed to improve DOE management of demonstration projects [Internet]. GAO; 2021 Dec. Report No.: GAO-22-105111. Available from: <https://www.gao.gov/assets/gao-22-105111.pdf>

33. National Academies of Sciences, Engineering, and Medicine. Safety, societal considerations, and impacts of carbon management [Internet]. 2024 [cited 2025 Feb 6]. Available from: <https://www.nationalacademies.org/our-work/safety-societal-considerations-and-impacts-of-carbon-management>
34. Sekera J, Cagalanan D, Swan A, Birdsey R, Goodwin N, Lichtenberger A. Carbon dioxide removal—What's worth doing? A biophysical and public need perspective. *PLOS Clim.* 2023;2(2):e0000124. <https://doi.org/10.1371/journal.pclm.0000124>
35. Nielsen JAE, Stavrianakis K, Morrison Z. Community acceptance and social impacts of carbon capture, utilization and storage projects: a systematic meta-narrative literature review. *PLoS One.* 2022;17(8):e0272409. <https://doi.org/10.1371/journal.pone.0272409> PMID: 35917379
36. Witt K, Ferguson M, Ashworth P. Understanding the public's response towards 'enhanced water recovery' in the Great Artesian Basin (Australia) using the carbon capture and storage process. *Hydrogeol J.* 2020;28:427–37.
37. Anderson C, Schirmer J, Abjorensen N. Exploring CCS community acceptance and public participation from a human and social capital perspective. *Mitig Adapt Strateg Glob Change.* 2011;17(6):687–706. <https://doi.org/10.1007/s11027-011-9312-z>
38. Wong-Parodi G, Ray I. Community perceptions of carbon sequestration: insights from California. *Environ Res Lett.* 2009;4:034002.
39. McLaren D, Krieger K, Bickerstaff K. Justice in energy system transitions: the case of carbon capture and storage. *Energy Justice Chang Clim* [Internet]. London; New York: Zed Books; 2013 [cited 2024 Jul 10]. p. 158–81. Available from: [https://www.research.lancs.ac.uk/portal/en/publications/justice-in-energy-system-transitions\(3e0f687f-88a4-4847-ac62-f84998dab75a\).html](https://www.research.lancs.ac.uk/portal/en/publications/justice-in-energy-system-transitions(3e0f687f-88a4-4847-ac62-f84998dab75a).html)
40. Rojas-Rueda D, McAuliffe K, Morales-Zamora E. Addressing health equity in the context of carbon capture, utilization, and sequestration technologies. *Curr Environ Health Rep.* 2024;11(2):225–37. <https://doi.org/10.1007/s40572-024-00447-6> PMID: 38600409
41. European Environment Agency. Air pollution impacts from carbon capture and storage (CCS) [Internet]. Copenhagen: EEA; 2011. p. 70. Report No.: 14/2011. Available from: <https://www.eea.europa.eu/publications/carbon-capture-and-storage>
42. Wang Y, Pan Z, Zhang W, Borhani TN, Li R, Zhang Z. Life cycle assessment of combustion-based electricity generation technologies integrated with carbon capture and storage: a review. *Environ Res.* 2022;207:112219. <https://doi.org/10.1016/j.envres.2021.112219> PMID: 34656638
43. Chen X, Huang G, An C, Yao Y, Zhao S. Emerging n-nitrosamines and n-nitramines from amine-based post-combustion CO2 capture – a review. *Chem Eng J.* 2018;335:921–35.
44. Fostås B, Gangstad A, Nenseter B, Pedersen S, Sjøvoll M, Sørensen AL. Effects of NOx in the flue gas degradation of MEA. *Energy Procedia.* 2011;4:1566–73. <https://doi.org/10.1016/j.egypro.2011.02.026>
45. Lu H, Ma X, Huang K, Fu L, Azimi M. Carbon dioxide transport via pipelines: a systematic review. *J Clean Prod.* 2020;266:121994.
46. Vitali M, Zuliani C, Corvaro F, Marchetti B, Terenzi A, Tallone F. Risks and safety of CO2 transport via pipeline: a review of risk analysis and modeling approaches for accidental releases. *Energies.* 2021;14(15):4601. <https://doi.org/10.3390/en14154601>
47. Koornneef J, Spruijt M, Molag M, Ramirez A, Faaij A, Turkenburg W. Uncertainties in risk assessment of CO2 pipelines. *Energy Procedia.* 2009;1(1):1587–94. <https://doi.org/10.1016/j.egypro.2009.01.208>
48. Alcalde J, Flude S, Wilkinson M, Johnson G, Edlmann K, Bond CE, et al. Estimating geological CO2 storage security to deliver on climate mitigation. *Nat Commun.* 2018;9(1):2201. <https://doi.org/10.1038/s41467-018-04423-1> PMID: 29895846
49. Gholami R, Raza A, Iglauer S. Leakage risk assessment of a CO2 storage site: a review. *Earth-Science Rev.* 2021;223:103849. <https://doi.org/10.1016/j.earscirev.2021.103849>
50. Koornneef J, Ramírez A, Turkenburg W, Faaij A. The environmental impact and risk assessment of CO2 capture, transport and storage – an evaluation of the knowledge base. *Prog Energy Combust Sci.* 2012;38:62–86.
51. National Research Council. Induced seismicity potential in energy technologies [Internet]. Washington, D.C.: National Academies Press; 2013 [cited 2023 Aug 10]. Available from: <http://www.nap.edu/catalog/13355>
52. Oruganti Y, Bryant SL. Pressure build-up during CO2 storage in partially confined aquifers. *Energy Procedia.* 2009;1(1):3315–22. <https://doi.org/10.1016/j.egypro.2009.02.118>
53. Warner T, Vikara D, Guinan A, Dilmore R, Walter R, Stribley T, et al. Overview of potential failure modes and effects associated with CO2 injection and storage operations in saline formations [Internet]. U.S. Department of Energy National Energy Technology Laboratory; 2020. Report No.: DOE/NETL-2020/2634. Available from: <https://www.energy.gov/lpo/articles/overview-potential-failure-modes-and-effects-associated-co2-injection-and-storage>